Manufacturing: The Key to Sustainable Business Innovation in the U.S.

By Daniel Riley and Jacob Park When President Barack Obama gave his State of the Union Address (1) last month, he made the case that U.S. economic revival is tied to a healthy manufacturing sector. Of course, he is not the first to triumph the importance of manufacturing to the economy. The key question, however, is what type of manufacturing the U.S. should have in the future. The answer, for the economy and for sustainable business innovation, may lie in advanced 3D printing technologies (2) or what some technology analysts refer to as, "additive manufacturing whereby machines based on advances in electronics and laser technology build complex materials from granules of plastics or metal" (3).

While not usually touted as a traditional sustainable technology, additive manufacturing processes can dramatically reduce the amount of waste created in the production of items from furniture to packaging. As compared to traditional manufacturing technologies, 3D printing technologies have relatively small capital requirements. MakerBot Industries (4), for instance, sells 3D kits designed for hobbyists for around $1,000.

According to the UN Environmental Program, the typical car wastes about 10,000 kg of raw materials during production (5). For example much of the bulk of a fender, because of uniform thickness requirements of typical manufacturing processes like welding and molding, is completely unnecessary. To Jim Kor of KOR EcoLogic who wanted to create the most efficient car possible, that unnecessary material increased drag and decreased fuel economy. "If you look at a cross section of a bird bone, you'll see that there is bone only where the bird needs strength," Kor explained. "The bone looks like chaotic webbing. [3D printing] is the only process that can replicate a bird bone." This logic led to the creation of the Urbee, the world’s first 3D printed car (6).

Like stacking bricks to build a house, 3D printing creates objects in layers, from the base up, without the limiting constraints of molding requirements or human error in welding. The result maximizes material usage, ensuring that no material needlessly goes from welder’s torch to junkyard. Even in smaller 3D printing projects, material use efficiency is an automatic consideration. The small scale of production typical of most 3D printing efforts means that, unlike with large-run manufacturing the cost of wasted material does not have to be ameliorated through economies of scale.

Shapeways, a company that allows customers to design custom products like furniture and household objects that might be hard to replace otherwise, actively encourages customers to save money by using less material (7). By prompting their customers to actively think about the materials that go into the production of their products, 3D-printing businesses like Shapeways foster consumer awareness of cost and material wastes involved production. This transparency is increasingly relevant as consumers demand that products be not only cost competitive (obviously an important factor in our current economic times) but also designed and produced with environmental sustainability in mind (8).

In addition, the U.S. is still dominated by the business model of making as many products as cheaply as possible, which often means outsourcing the actual manufacturing.A truly innovative feature of the additive manufacturing model is that it brings the possibility of scale to the emerging "hyperlocal" trend that can be seen from Northern California to Vermont. There are many emerging sustainable business enterprises that attempt to build on the growing consumer interest in all things local (e.g. food, energy, economic development, etc) and additive manufacturing provides a market template from which to scale a local business model to greater competitive advantage.

Case in point: what if a small community-oriented bookstore like Northshire Bookstore in Manchester, Vermont, had a machine that allowed consumers to print books that were in the Public Domain (i.e. do not have copyright protection)? All you would have to do is search and find the book of your choice and, if it were in the Public Domain, order the number of copies you want at a fraction of the cost of going through traditional book retailers. Through what Northshire Bookstore refers to as "print on demand technology"(10), this small but innovative business can now more effectively compete with large e-retailers like Amazon.com and chain book retailers like Barnes & Noble.

The argument that the future of the US economy lies in sustainable business has been made before, and additive manufacturing cannot substitute for well-designed tax and other policy incentives for green energy technologies. Rather, there is a strong case for building a well-articulated U.S. additive manufacturing strategy to complement current green technology research and development efforts, such as solar and wind energy. This could have a major impact on the entire American business system By using 3D printing technologies to promote local production and advances in material sustainability, U.S. manufacturing has a real opportunity to be reborn as a hub of 21st century sustainable business innovation (11).

As Cory Doctorow, author of Makers, suggests in an influential 2010 Wired magazine article (12): "The days of companies with names like ‘General Electric’ and ‘General Mills’ and ‘General Motors’ are over. The money on the table is like krill: a billion little entrepreneurial opportunities that can be discovered and exploited by smart, creative people."

References

(1) President Barack Obama State of the Union Address (January 24, 2012)

http://www.nytimes.com/interactive/2012/01/24/us/politics/state-of-the-union-2012-video-transcript.html

(2) "The Fundamentals of 3D Printing," The Future of Open Fabrication, n.d., http://www.openfabrication.org/?page_id=29

(3) March. P. (2011) "Production Processes: A Lightbulb Moment", Financial Times, December 29, p. 5.

(4) http://www.makerbot.com/

(5)  "Waste and car production - Maps and Graphics at UNEP/GRID-Arendal," Maps & Graphics, n.d., http://maps.grida.no/go/graphic/waste_and_car_production

(6) "URBEE car - 3D Printed Body," Resources: Case Studies, n.d., http://www.stratasys.com/Resources/Case-Studies/Automotive-FDM-Technology-Case-Studies/Urbee.aspx

(7) "Shapeways | creating hollow objects," Creating Hollow Objects, n.d., http://www.shapeways.com/tutorials/creating-hollow-objects

(8) OgilvyEarth research is one important source http://www.ogilvyearth.com/thought-leadership/latest-research

(9) Alexa Clay and Jon Carnfield, "5 Big Ideas for a New Economy", Co.Exist Blog http://www.fastcoexist.com/1679221/5-big-ideas-for-a-new-economy

(10) http://www.northshire.com/books_on_demand.php

(11) 3-D printer is featured in Fortune Magazine’s "Brave New Work: The Office of Tomorrow" photo essay (pg. 49-55) in its January 16, 2012 "The Future Issue"

http://money.cnn.com/magazines/fortune/fortune_archive/2012/01/16/toc.html

(12) http://www.wired.com/magazine/2010/01/ff_newrevolution/all/1

Contributor Biographies

Daniel Riley (email: rileyd@greenmtn.edu) is a senior studying Environmental Management at Green Mountain College. After graduation he plans to start a business using 3D printing as a way to solve current environmental issues of resource use and material efficiency.

Jacob Park (email:parkj@greenmtn.edu), Associate Professor of Business Strategy and Sustainability at Green Mountain College, specializes in the business of social and environmental innovation and entrepreneurship in emerging economies.

Digital Farm Collective

Re-Establishing Ancient Agricultural Practices: Lessons from the Recent Past (Part Two)