Re-Establishing Ancient Agricultural Practices: Lessons from the Recent Past (Part Two)

By Jennifer Huebert Forgotten or fading traditional agricultural practices may be able to address modern-day agricultural challenges. In this series, several recent efforts to re-establish such practices are reviewed. Each example illustrates a distinct problem, and has a unique history to consider. In the last issue, key criteria for an effective revival of forgotten agricultural technologies were outlined, and a case study from an Israeli desert was presented. This second installment highlights two additional case studies: one from the forests of Central America and another from the Andean highlands.

Case Study #2: Mayan forest gardening in Belize at El Pilar

The Mayan people have lived in the lowlands of the Belize - Guatemala border for several millennia. This region is home to a subtropical forest that stretches into southern Mexico. Mayan farmers have traditionally practiced a method of agriculture that is centred on the cultivation of forests which produce food, building materials, medicine and other plant products (1, 2). The Mayan language reflects an intimate knowledge of the natural environment, including subtle distinctions of land in various stages of cultivation (3).

El Pilar has always been remote. In ancient times, it was at the edge of the large Mayan civilization of Tikal. It was of little interest to the Spanish who controlled the area after conquest in the 16th century. In the 19th century the area became known as a resource for mahogany wood, ingredients to make dye, and chicle, which was used to make chewing gum. There is evidence that most of the plants utilized for commercial purposes were the result of relict Mayan agricultural activities (1, 4). For centuries after Western contact, the Maya migrated in small groups throughout the area, largely avoiding notice until both government harassment and paying work opportunities drew them into larger settlements in the 19th century. Their traditional agricultural practices were then discouraged to weaken indigenous claims to the land. In the mid 20th century, indigenous Mayans returned to the region after land reform laws were passed, but there is a concern that traditional Mayan culture is breaking down as traditions, such as forest gardening, are forgotten (4).

A multi-tiered version of agroforestry termed forest gardening is an important traditional Mayan agricultural practice. This type of agroforest is not often easy to discern from the surrounding forest. Crops are tended by subtle manipulations of the environment, ranging from merely encouraging plant growth to sowing seeds in ordered rows. Though no specialized equipment is needed, farmers practicing these techniques draw on an extensive knowledge of plants and the environment in their techniques (1). Hundreds of different crops are raised with these methods, including tamarind, mango, cacao and papaya, and various spices as well as dyes, wood, fodder and ornamental flowers.

Archaeological excavations of household complexes and surveys of the surrounding vegetation indicate that most of the area consists of anthropogenic forest, modified by residents over many thousands of years. Higher densities of useful crop plants are found in areas where forest gardens were thought to exist in the past (1). Archaeological surveys have uncovered patterns of ancient Mayan land use, which will be easier to interpret as knowledge of forest gardening practices grow. Over the years, extensive excavation and restoration of temple complexes near the site has taken place, and the excavation team is still studying the chronology of the area as part of the larger goal of understanding El Pilar in relation to the major ancient centres of Mayan civilization (4).

The El Pilar project that initiated this revival effort was founded by American archaeologist Anabel Ford, who has been working in this region since the early 1980s. The project was founded in 1992 and is sponsored in part by the University of California, Santa Barbara. It includes restored Mayan temples, surrounding houses, and forest gardens near thetemple and plaza remains of El Pilar. The site also includes an informational trail through an example forest garden and a cultural centre that hosts community educational workshops (2).

The project aims to support the application of indigenous knowledge to modern day concerns for conservation and development in the region (4). In order to preserve the environment, Ford has campaigned for government protection of the forests and advocates community leadership to sustain these efforts. Local college graduates have been brought on as part of the project staff. Several goals for the forest garden project were defined in collaboration with local community members; these include promoting the forest gardens as a sustainable alternative to the slash and burn agriculture practiced in much of the area today, and a means to resist outside pressure to raise single crops and invest in expensive technology to increase yields.

The community has also expressed interest in promoting these techniques as an honoured skill, rather than a simple peasant tradition. Part of the El Pilar program consists of teaching the methods to others by hosting training seminars and constructing a demonstration garden. An illustrated plant database and informational web site have been produced with data collected from present-day forest gardens. Over 400 different cultivated plants from two dozen forest gardens are recorded, along with their uses and photographs. The cultivars of each field can be searched, compared and contrasted to better understand the intricacy and diversity of this method of agriculture (5).

Case Study #3: Raised field agriculture on the Andean altiplano

Lake Titicaca sits high in the Andes Mountains of South America on the altiplano, a high-altitude plateau on the border between Bolivia and Peru. The basin surrounding this lake receives irregular rainfall, suffers unpredictable frosts and has generally poor soil for growing crops (6, 7). It has been home to indigenous populations who have farmed the land for thousands of years. These peoples endured the rise and fall of the powerful Tiwanaku state in prehistoric times and later endured conquest by the Inca and Spanish (8). The Quecha and Aymara peoples who live in this region have long subsisted on agricultural crops and livestock such as llama, alpaca and guinea pig. However, today the growing population relies heavily on imported food, as productivity is limited by poor soils and climatic extremes (6, 7).

Agriculture in this region takes place on hilly upland slopes and, to a lesser degree, on grassy, seasonally flooded plains called pampa. Potatoes and quinoa, crops first domesticated in the Titicaca Basin, are the primary cultivars (6). The farming methods used on the altiplano don’t make for easy work. A variety of hand-held hoes and a traditional foot plow, which consists of a digging stick with a paddle attached for the foot, are used to till the soil (7). In this region, there is a wet season and a dry season, each lasting for approximately half of the year. Unexpected dry spells and frosts make this a high-risk area for agriculture (6).

In recent decades, there had been attempts to introduce modern agricultural technologies in this area. Most met with failure, as the costs of implementing the practices were too high or the schemes judged too risky. One challenge has been the size of land holdings in the region (7, 9). Most families own small parcels of land, and choosing to raise cash crops instead of food crops would pose a serious food security risk. Another challenge has been presented by the government, which encourages the use of expensive modern machinery, fertilizers and pesticides. The majority of the rural population in the Andes do not have an outside income and cannot afford to own, operate or invest in such yield-improving technologies (6).

Raised agricultural field relicts have been found extensively throughout the Titicaca basin on the pampa plains (7, 9). By all current observations, such a practice has been long forgotten by the indigenous people in the region. The methods were not noted even by Spanish explorers in the 16th century (6). In the 1980s, two separate teams of American academics, led by Clark Erickson and Alan Kolata, visited the region and conducted experiments in attempts to resurrect these agricultural fields and provide a new method of subsistence to the indigenous population.

Archaeological excavations of these relict fields have uncovered a system of high, raised beds with deep canals. Pollen and soil analysis of ancient canal sediments has shown these to be rich soils cycled from canal to field bed. Erickson and his team also located and excavated farm settlements near the fields. They studied subsistence patterns and agriculture in these areas by examining plant remains from middens and fill. Remains of potatoes, quinoa, fish, camelids, bird, guinea pig and lake plants represented a diet similar to that of people in the region today. They also found many stone fragments from broken hoes (6).

Aerial photo of ancient raised agricultural beds near Lake Titicaca, Peru (Image © 2012 Google)

A rough chronology of the fields was established by dating potsherds present in the ancient field soil. A date range of 3000 before present (BP) was established as the inception of the agricultural beds, and cultivation appears to have continued for several thousand years (6, 7). The precise reasons for adoption of raised-bed agriculture are not clear, though Erickson and Kolata agree that widespread development and use of these fields was tied in some ways to population growth and the influence of the Tiwanaku state, and later the Aymara kingdoms in the region (6, 10). At its height the region supported more than 350,000 people; these numbers dwindled considerably after Spanish conquest (8).

Raised agricultural fields consist of elevated beds surrounded by water canals. Earth dug from the canals is mounded to create beds for planting crops. The canals are flooded with water, providing irrigation in times of drought and protection from unexpected frosts (6). Green manure is created from canal sediment including algae, and there is some speculation that canals may have also supported fish in ancient times (6, 9). Fields were further fertilized with animal dung, as livestock was allowed to graze on them after harvest (7). However, Erickson and Chandler (9) discouraged this practice as it was destructive to the field platforms.

Both teams determined that raised-bed agriculture could be revived as a highly productive, economical and sustainable solution appropriate to the region (6, 7, 9). They hypothesized that these methods were well suited to the altiplano environment and the technologies people were using there today. They also believed that the population, though financially poor, had a surplus of labour available to invest in these practices and that the effort required to cultivate the fields would fit well with the tradition of communal social groups in the culture.

Erickson undertook the first raised-bed experiments in this region in the early 1980s in conjunction with colleagues in Peru and with funding from the Peruvian government. This project was admittedly a small-scale experiment, involving 10 hectares in the northern area of the lake basin (6, 9). Erickson formed a team of anthropologists, archaeologists and agronomists to work with Quecaha and Aymara volunteers on the experimental test beds over the course of five years. Metrics for the bed and canal sizes were based on data from archaeological excavations of the relict fields. Traditional tools were utilized to cultivate the soil. Considerable labour was required to reconstruct fields, but after the initial investment annual maintenance and rebuilding efforts were considered manageable tasks. Crops were chosen with the help of the community. For the duration of the experiment, potato and grains such as quinoa produced yields that far exceeded those achieved by modern methods used by farmers in the region today (6).

Alan Kolata organized a larger-scale, systematic project on the south side of the lake in the area near the ruins of Tiwanaku. Scientific analyses of the soils, water and climate were conducted to study the growing conditions of the area, and 50 hectares were planted with the involvement of 22 communities. Training materials were developed including multilingual videos, texts and hands-on instruction in the fields. Leaders of the local indigenous communities were involved to convey the potential of these methods to their people, with the intention of motivating groups to participate in the project. A formal agreement with these community leaders included a supply of seed and hand tools in exchange for participation in the project. The selection of crops took place with community members, and included primarily potatoes, grains and vegetables to a smaller extent (7).

Climate and politics halted both projects intermittently, as a severe drought and later political unrest swept through the region in the mid-1980s. However, by the end of the decade Erickson considered his team’s experiments a success (6). Kolata and his team reported high but widely variable yields in the 1991-92 seasons. He claims that this is due to variable compliance with the suggested practices and the uneven distribution of natural resources such as good soils and access to reliable sources of water (7). Practical problems were encountered, such as the draining of the canals to water livestock and resistance by some groups to invest labour in mucking out canal sediments. While some communities were enthusiastic and managed labour well, others were poorly organized and missed key milestones that affected crop yields. The yields from Erickson’s experiments were larger than those achieved by Kolata. Both were widely variable across the different communities. Ultimately, these experiments yielded crops two to three times larger than those raised with traditional methods (7, 11).

Kolata concludes that his project is a success in the short term, where program compliance fostered high crop yields for some participant groups, and the potential benefits of raised-bed agriculture were clearly demonstrated. However, he also expressed serious considerations regarding the long-term sustainability of this agricultural technique in the region. Both Kolata and Erickson suggest that agricultural practices need to be considered in the larger context of society, including considerations of economics, politics, technology and the environment (7, 12). Erickson and Chandler (9) point out that experiments such as these can generate the interest of the local community and stimulate change, but that lasting change must arise from within communities.

Part three in this series will compare and contrast these case studies, and evaluate their potential to affect change in global food-production practices today.

References

1. Ford A (2004) Human Impacts on the Maya Forest Linking the Past with the Present for the Future of El Pilar, Report on the 2004 Field Season. (The BRASS/El Pilar Program, University of California Santa Barbara, Santa Barbara).

2. Ford A (2008) The BRASS / El Pilar Program: Archaeology Under the Canopy. (MesoAmerican Research Center, University of California Santa Barbara).

3. Flannery KV ed (1982) Maya Subsistence (Academic Press, New York).

4. Ford A, Egerer C, Moore K, & Stanley E (2005) Culture & Nature in the Maya Forest: A Report on the 2005 Field Season - El Pilar. (Maya Forest Alliance & ISBER/MesoAmerican Research Center, University of California Santa Barbara, Santa Barbara).

5. Anonymous (2008) The El Pilar Forest Garden Network.

6. Erickson C (1988) Raised Field Agriculture in the Lake Titicaca Basin. Expedition 30(3):8-16.

7. Kolata AL, Rivera O, Ramirez JC, & Gemio E (1996) Rehabilitating Raised-Field Agriculture in the Southern Lake Titicaca Basin of Bolivia. Tiwanaku and its Hinterland : Archaeology and Paleoecology of an Andean Civilization, ed Kolata AL (Smithsonian Institution Press, Washington), Vol 1: Agroecology, pp 203-230.

8. Binford MW & Kolata AL (1996) The Natural and Human Setting. Tiwanaku and its Hinterland : Archaeology and Paleoecology of an Andean Civilization, ed Kolata AL (Smithsonian Institution Press, Washington), Vol 1: Agroecology, pp 23-56.

9. Erickson C & Chandler K (1989) Raised Fields and Sustainable Agriculture in the Lake Titicaca Basin of Peru. Fragile Lands of Latin America: Strategies for Sustainable Development, ed Browder JO (Westview Press, Boulder), pp 230-248.

10. Janusek JW & Kolata AL (2004) Top-down or bottom-up: rural settlement and raised field agriculture in the Lake Titicaca Basin, Bolivia. Journal of Anthropological Archaeology 23(4):404-430.

11. Erickson C (2003) Agricultural Landscapes as World Heritage: Raised Field Agriculture in Bolivia and Peru. Managing Change: Sustainable Approaches to the Conservation of the Built Environment. The 4th Annual US/ICOMOS International Symposium 6-8 April 2001, Philadelphia, Pennsylvania, eds Teutonico JM & Matero FG (Getty Conservation Institute, Los Angeles), pp 181-204.

12. Erickson C (1998) Appllied Archaeology and Rural Development. Crossing Currents: Continuity and Change in Latin America, eds Whiteford MB & Whiteford S (Prentice Hall, Upper Saddle River), pp 34-45.

Contributor’s Biography

Jennifer Huebert is a doctoral candidate in archaeology at the Department of Anthropology, University of Auckland, New Zealand. She is an archaeobotanist with a particular interest in the identification and analysis of archaeological wood charcoal. Her primary research topics include the study of human palaeoecology and the development of arboriculture in the archipelagos of East Polynesia.

Manufacturing: The Key to Sustainable Business Innovation in the U.S.

Factors that Influence the Exit Rates of Sustainability Science: A Graduate Student’s Perspective