Land use

Re-establishing ancient agricultural practices: Lessons from the recent past (Part Three)

By Jennifer Huebert In this three part series, several recent efforts to re-establish forgotten or fading agricultural practices were reviewed. The first instalment presented key criteria to consider for an effective revival of these food-production technologies. Three case studies were profiled in the second instalment: runoff agriculture in the Israeli desert, forest gardening in Central America and raised-bed agriculture in the Andean highlands. Each example illustrated a distinct problem with a unique history to consider. In this final instalment, I review how each revival effort addressed these criteria and reflect on the importance of studying the distant past to make informed decisions about the future.

Discussion The three case studies presented—raised-bed agriculture at Lake Titicaca, El Pilar forest gardening and runoff irrigation in the Negev Desert—represent a wide variety of environments and distinctly different agricultural practices. Each project was undertaken at a different point in time, spanning the better part of the past fifty years. To aid in comparing these varied projects, and to contemplate their effectiveness, a list of key points was compiled and will be subsequently discussed.

Cost-benefit considerations Each project attempted to resurrect a forgotten or fading agricultural practice. These methods involve widely varying degrees of time, effort and technology. It is important to consider whether there was a clear benefit for the costs related to these projects (1). In the case of raised-bed agriculture near Lake Titicaca, techniques involved simple tools and uncomplicated practices that required a significant initial investment in labour. At El Pilar, traditional Mayan forest gardening did not require special tools or an intensive labour investment but did require participants to learn very involved techniques. Desert farming in the Negev was more complex than the other two case studies on several fronts; the project would have involved a significant amount of labour and engineering skills if the initial wadis had not already been present. These practices also rely on much planning and precise timing, and are the most technically involved of the three case studies.

Today’s environment In order to establish whether the practices were appropriate for the current environmental conditions, the teams that initiated the raised-bed agriculture and desert wadi farming projects performed background research and experimented to ensure that the forgotten techniques were still viable in these areas. In these projects, teams of specialists first gathered data to evaluate soil conditions, water supply, climate, potential plant species and other factors that would influence crop growth. After viability was established, experiments were undertaken by planting test crops in the fields and studying their growth rates and yields. The experiments were repeated over the course of several years, and techniques were then refined. After demonstrating a measure of success, the methods utilized in these two case studies were taken to a wider audience and other local communities, or other societies, were trained in the practices.

Modern-day communities Several project teams considered the agricultural techniques in relation to the cultures they were working with while planning and implementing these practices. In the El Pilar case, the community was involved at all stages of planning as the practices they were attempting to promote were still in use by indigenous peoples in the area. This project focused on goals set by the community, namely to preserve and promote indigenous Mayan culture and to encourage agricultural practices which they believed were in harmony with the natural environment. People in this area participated in the project willingly and continue to support it (3). Researchers in the Titicaca basin case study had a more difficult task because they were bringing their methods to a community who had seen disappointing results from previous outsider attempts to introduce new food-production technology (as summarised in 2). Because the Aymara and Quecha people of the altiplano had no memory of the techniques the researchers wanted to implement, there was little reason for people to embrace raised-field agriculture as their cultural tradition. Kolata, an anthropologist, performed a significant amount of research studying the indigenous cultures of the region in order to understand their group motivations and learning pathways (4). Both Titicaca Basin teams employed multiple training methods to try to ensure community involvement. They also spent time calculating the labour investment required to practice these methods, and invested much time and energy demonstrating that the techniques would be productive. However, their plans were ultimately received with some resistance and varying degrees of enthusiasm (5).

Sustainability All project teams considered whether the practices had been initially sustainable, and uncovered the reasons they were initially forgotten or disappearing. In the Titicaca basin, archaeological excavations at the ancient capital of Tiwanaku and around the raised beds in the area have led archaeologists to conclude that they were largely used to raise surplus crops for the state. Once these polities declined, the agricultural practice waned and was eventually abandoned (6). However, there are additional concerns regarding the productivity and high labour costs associated with the form of cultivation that these project teams failed to appropriately consider (7). In the Negev desert, the immense effort and skill required to initially build walls and terraces throughout the desert in ancient times is thought to have involved labour coordinated from a state centre (8). Once these structures were in place, no extraordinary amount of labour was needed to farm the desert. However, life in this remote area was abandoned when borders or pilgrimage routes through the desert no longer needed to be maintained. In the case of the Mayan forest gardeners at El Pilar, the sustainability of this cultivation method is evident in the extensive and largely anthropogenic forests of the region (8). This method is only under threat of extinction today when socio-political forces have seriously disrupted the indigenous population’s methods of survival.

Where are these projects today? Over twenty years on, the Negev desert farms were reported to be productive, though the farm at Avdat is no longer actively cultivated. In his concluding remarks on the Negev project, Evenari mused that it would have been ideal to turn the desert into a productive environment for the Bedouin nomads while preserving their cultural heritage (9). While it is not clear that this aim was ever achieved, the model farm that was constructed is now a worldwide teaching and research centre for the study of agronomy, plant and soil sciences in arid environments. It has effected change in arid farming practices in ten different countries (10).

After much media and political attention, several non-governmental organizations were formed around the raised agricultural beds of the Lake Titicaca basin. These practices were hailed as a solution to poverty in the region, but when the leadership organizations fell apart and financial incentives to participate were withdrawn the practices were largely abandoned with high labour input given much of the blame. An extensive post-mortem study of these projects was reported in several books and a number of academic writings that called into question the assumptions and tactics used to try to resurrect these agricultural techniques (7, 11, 12). Kolata has revisited the project in his subsequent research, reconsidering issues of state politics and individual agency in regards to the organization of ancient field labour (5). In his own review, Erickson (13) noted that some farmers in the Titicaca region do continue to practice raised-bed farming techniques, and he has conducted similar experiments in other places with success (e.g., 14).

The El Pilar forest gardening project is still very much a work in progress and criteria to evaluate the success of the revival effort are difficult to estimate at this stage. The cultivars used in forest gardening are recorded in detail, but the specific techniques were not reported and no benchmarks could be located to evaluate progress. However, it is acknowledged that the principles of forest gardening are essentially those of agroforestry, which is a well-established, cost effective and sustainable agricultural practice (15, 16). Evidence that these techniques have been used in the region for thousands of years further reinforces the fact that they are sustainable and productive. A concentrated revival effort may make them flourish again. Ford (3) believes a successful project will ultimately encourage ecotourism to attract and educate a wider audience in the methods and benefits of this type of cultivation.

Conclusions Each of the techniques reviewed has been shown to be productive and sustainable. However, as it was argued earlier, re-established agricultural practices must fit not only with the environmental but also the social and economic systems of the cultures for which they are intended. This is evident in the breakdown of the raised-bed agriculture revivals in the Titicaca Basin. These initiatives did not affect large-scale change in food production practices in the region because they did not fit within the current structure of the societies that were involved. The foregoing hypothesis is also supported by the successes of the Mayan Forest Garden Network. Mayan agricultural traditions endured for millennia and have only recently been threatened because of the breakdown of traditional society. The revival effort to educate people in forest gardening methods is supported, and led in part, by the indigenous population of the area and it has great potential to succeed. The Negev desert farming initiative, the most mature of the case studies presented, provides evidence that ancient agricultural practices can actually be leveraged to solve some of today’s global food production problems.

We have a lot to learn from the past, and archaeology provides a unique perspective on the long-term sustainability of various food production practices. It has been demonstrated that local as well as global communities can succeed in the preservation (or revival) of traditional food-production techniques. Agrarian landscapes are cultural landscapes, and ultimately, part of our world heritage.

Contributor’s Biography Jennifer Huebert is a doctoral candidate in archaeology at the Department of Anthropology, University of Auckland, New Zealand. She is an archaeobotanist with a particular interest in the identification and analysis of archaeological wood charcoal. Her primary research topics include the study of human palaeoecology and the development of arboriculture in the archipelagos of East Polynesia.

The author urges you to become more informed about UNESCO World Heritage designations and the importance of agricultural landscapes in this initiative (see 13).

References Cited

1.         Uphoff NT (2002) The Agricultural Development Challenges We Face. Agroecological Innovations: Increasing Food Production With Participatory Development, ed Uphoff NT (Earthscan, London), pp 3-20.

2.         Erickson C & Chandler K (1989) Raised Fields and Sustainable Agriculture in the Lake Titicaca Basin of Peru. Fragile Lands of Latin America: Strategies for Sustainable Development, ed Browder JO (Westview Press, Boulder), pp 230-248.

3.         Ford A (2004) Human Impacts on the Maya Forest Linking the Past with the Present for the Future of El Pilar, Report on the 2004 Field Season. Accessed: April 20 2008 http://www.marc.ucsb.edu/elpilar/brass/chron/fieldr/report04.pdf.

4.         Kolata AL (1996) Tiwanaku and its Hinterland: Archaeology and Paleoecology of an Andean Civilization (Smithsonian Institution Press, Washington).

5.         Kolata AL, Rivera O, Ramirez JC, & Gemio E (1996) Rehabilitating Raised-Field Agriculture in the Southern Lake Titicaca Basin of Bolivia. Tiwanaku and its Hinterland : Archaeology and Paleoecology of an Andean Civilization, ed Kolata AL (Smithsonian Institution Press, Washington), Vol 1: Agroecology, pp 203-230.

6.         Janusek JW & Kolata AL (2004) Top-down or bottom-up: rural settlement and raised field agriculture in the Lake Titicaca Basin, Bolivia. Journal of Anthropological Archaeology 23(4):404-430.

7.         Bandy MS (2005) Energetic efficiency and political expediency in Titicaca Basin raised field agriculture. Journal of Anthropological Archaeology 24:271–296.

8.         Haiman M (2006) ADASR - Ancient Desert Agriculture Systems Revived. Accessed: 19 April 2008 http://www.mnemotrix.com/adasr/arch.html.

9.         Evenari M, Shanan L, & Tadmor N (1982) The Negev: The Challenge of a Desert (Harvard University Press, Cambridge).

10.       Lange OL & Schulze E-D (1989) In memoriam Michael Evenari (formerly Walter Schwarz) 1904–1989. Oecologia 81(4):433-436.

11.       Morris A (2004) Raised Field Technology. The Raised Fields Projects Around Lake Titicaca (Ashgate Aldershot).

12.       Swartley L (2002) Inventing Indigenous Knowledge: Archaeology, Rural Development, and the Raised Field Rehabilitation Project in Bolivia (Routledge, New York) pp xii, 210 p.

13.       Erickson C (2003) Agricultural Landscapes as World Heritage: Raised Field Agriculture in Bolivia and Peru. Managing Change: Sustainable Approaches to the Conservation of the Built Environment. The 4th Annual US/ICOMOS International Symposium 6-8 April 2001, Philadelphia, Pennsylvania, eds Teutonico JM & Matero FG (Getty Conservation Institute, Los Angeles), pp 181-204.

14.       Erickson C (1995) Archaeological methods for the study of ancient landscapes of the Llanos de Mojos in the Bolivian Amazon. Archaeology in the Lowland American Tropics, ed Peter W. Stahl JA (Cambridge University Press, Cambridge), pp 66-95.

15.       Singh P, Pathak PS, & Roy MM (1995) Agroforestry Systems for Sustainable Land Use (Science Publishers, Lebanon, N.H.) pp viii, 283 p.

16.       Elevitch C & Wilkinson K (2000) Agroforestry Guides for Pacific Islands http://agroforestry.net/afg/index.html.

Re-Establishing Ancient Agricultural Practices: Lessons from the Recent Past (Part Two)

By Jennifer Huebert Forgotten or fading traditional agricultural practices may be able to address modern-day agricultural challenges. In this series, several recent efforts to re-establish such practices are reviewed. Each example illustrates a distinct problem, and has a unique history to consider. In the last issue, key criteria for an effective revival of forgotten agricultural technologies were outlined, and a case study from an Israeli desert was presented. This second installment highlights two additional case studies: one from the forests of Central America and another from the Andean highlands.

Case Study #2: Mayan forest gardening in Belize at El Pilar

The Mayan people have lived in the lowlands of the Belize - Guatemala border for several millennia. This region is home to a subtropical forest that stretches into southern Mexico. Mayan farmers have traditionally practiced a method of agriculture that is centred on the cultivation of forests which produce food, building materials, medicine and other plant products (1, 2). The Mayan language reflects an intimate knowledge of the natural environment, including subtle distinctions of land in various stages of cultivation (3).

El Pilar has always been remote. In ancient times, it was at the edge of the large Mayan civilization of Tikal. It was of little interest to the Spanish who controlled the area after conquest in the 16th century. In the 19th century the area became known as a resource for mahogany wood, ingredients to make dye, and chicle, which was used to make chewing gum. There is evidence that most of the plants utilized for commercial purposes were the result of relict Mayan agricultural activities (1, 4). For centuries after Western contact, the Maya migrated in small groups throughout the area, largely avoiding notice until both government harassment and paying work opportunities drew them into larger settlements in the 19th century. Their traditional agricultural practices were then discouraged to weaken indigenous claims to the land. In the mid 20th century, indigenous Mayans returned to the region after land reform laws were passed, but there is a concern that traditional Mayan culture is breaking down as traditions, such as forest gardening, are forgotten (4).

A multi-tiered version of agroforestry termed forest gardening is an important traditional Mayan agricultural practice. This type of agroforest is not often easy to discern from the surrounding forest. Crops are tended by subtle manipulations of the environment, ranging from merely encouraging plant growth to sowing seeds in ordered rows. Though no specialized equipment is needed, farmers practicing these techniques draw on an extensive knowledge of plants and the environment in their techniques (1). Hundreds of different crops are raised with these methods, including tamarind, mango, cacao and papaya, and various spices as well as dyes, wood, fodder and ornamental flowers.

Archaeological excavations of household complexes and surveys of the surrounding vegetation indicate that most of the area consists of anthropogenic forest, modified by residents over many thousands of years. Higher densities of useful crop plants are found in areas where forest gardens were thought to exist in the past (1). Archaeological surveys have uncovered patterns of ancient Mayan land use, which will be easier to interpret as knowledge of forest gardening practices grow. Over the years, extensive excavation and restoration of temple complexes near the site has taken place, and the excavation team is still studying the chronology of the area as part of the larger goal of understanding El Pilar in relation to the major ancient centres of Mayan civilization (4).

The El Pilar project that initiated this revival effort was founded by American archaeologist Anabel Ford, who has been working in this region since the early 1980s. The project was founded in 1992 and is sponsored in part by the University of California, Santa Barbara. It includes restored Mayan temples, surrounding houses, and forest gardens near thetemple and plaza remains of El Pilar. The site also includes an informational trail through an example forest garden and a cultural centre that hosts community educational workshops (2).

The project aims to support the application of indigenous knowledge to modern day concerns for conservation and development in the region (4). In order to preserve the environment, Ford has campaigned for government protection of the forests and advocates community leadership to sustain these efforts. Local college graduates have been brought on as part of the project staff. Several goals for the forest garden project were defined in collaboration with local community members; these include promoting the forest gardens as a sustainable alternative to the slash and burn agriculture practiced in much of the area today, and a means to resist outside pressure to raise single crops and invest in expensive technology to increase yields.

The community has also expressed interest in promoting these techniques as an honoured skill, rather than a simple peasant tradition. Part of the El Pilar program consists of teaching the methods to others by hosting training seminars and constructing a demonstration garden. An illustrated plant database and informational web site have been produced with data collected from present-day forest gardens. Over 400 different cultivated plants from two dozen forest gardens are recorded, along with their uses and photographs. The cultivars of each field can be searched, compared and contrasted to better understand the intricacy and diversity of this method of agriculture (5).

Case Study #3: Raised field agriculture on the Andean altiplano

Lake Titicaca sits high in the Andes Mountains of South America on the altiplano, a high-altitude plateau on the border between Bolivia and Peru. The basin surrounding this lake receives irregular rainfall, suffers unpredictable frosts and has generally poor soil for growing crops (6, 7). It has been home to indigenous populations who have farmed the land for thousands of years. These peoples endured the rise and fall of the powerful Tiwanaku state in prehistoric times and later endured conquest by the Inca and Spanish (8). The Quecha and Aymara peoples who live in this region have long subsisted on agricultural crops and livestock such as llama, alpaca and guinea pig. However, today the growing population relies heavily on imported food, as productivity is limited by poor soils and climatic extremes (6, 7).

Agriculture in this region takes place on hilly upland slopes and, to a lesser degree, on grassy, seasonally flooded plains called pampa. Potatoes and quinoa, crops first domesticated in the Titicaca Basin, are the primary cultivars (6). The farming methods used on the altiplano don’t make for easy work. A variety of hand-held hoes and a traditional foot plow, which consists of a digging stick with a paddle attached for the foot, are used to till the soil (7). In this region, there is a wet season and a dry season, each lasting for approximately half of the year. Unexpected dry spells and frosts make this a high-risk area for agriculture (6).

In recent decades, there had been attempts to introduce modern agricultural technologies in this area. Most met with failure, as the costs of implementing the practices were too high or the schemes judged too risky. One challenge has been the size of land holdings in the region (7, 9). Most families own small parcels of land, and choosing to raise cash crops instead of food crops would pose a serious food security risk. Another challenge has been presented by the government, which encourages the use of expensive modern machinery, fertilizers and pesticides. The majority of the rural population in the Andes do not have an outside income and cannot afford to own, operate or invest in such yield-improving technologies (6).

Raised agricultural field relicts have been found extensively throughout the Titicaca basin on the pampa plains (7, 9). By all current observations, such a practice has been long forgotten by the indigenous people in the region. The methods were not noted even by Spanish explorers in the 16th century (6). In the 1980s, two separate teams of American academics, led by Clark Erickson and Alan Kolata, visited the region and conducted experiments in attempts to resurrect these agricultural fields and provide a new method of subsistence to the indigenous population.

Archaeological excavations of these relict fields have uncovered a system of high, raised beds with deep canals. Pollen and soil analysis of ancient canal sediments has shown these to be rich soils cycled from canal to field bed. Erickson and his team also located and excavated farm settlements near the fields. They studied subsistence patterns and agriculture in these areas by examining plant remains from middens and fill. Remains of potatoes, quinoa, fish, camelids, bird, guinea pig and lake plants represented a diet similar to that of people in the region today. They also found many stone fragments from broken hoes (6).

Aerial photo of ancient raised agricultural beds near Lake Titicaca, Peru (Image © 2012 Google)

A rough chronology of the fields was established by dating potsherds present in the ancient field soil. A date range of 3000 before present (BP) was established as the inception of the agricultural beds, and cultivation appears to have continued for several thousand years (6, 7). The precise reasons for adoption of raised-bed agriculture are not clear, though Erickson and Kolata agree that widespread development and use of these fields was tied in some ways to population growth and the influence of the Tiwanaku state, and later the Aymara kingdoms in the region (6, 10). At its height the region supported more than 350,000 people; these numbers dwindled considerably after Spanish conquest (8).

Raised agricultural fields consist of elevated beds surrounded by water canals. Earth dug from the canals is mounded to create beds for planting crops. The canals are flooded with water, providing irrigation in times of drought and protection from unexpected frosts (6). Green manure is created from canal sediment including algae, and there is some speculation that canals may have also supported fish in ancient times (6, 9). Fields were further fertilized with animal dung, as livestock was allowed to graze on them after harvest (7). However, Erickson and Chandler (9) discouraged this practice as it was destructive to the field platforms.

Both teams determined that raised-bed agriculture could be revived as a highly productive, economical and sustainable solution appropriate to the region (6, 7, 9). They hypothesized that these methods were well suited to the altiplano environment and the technologies people were using there today. They also believed that the population, though financially poor, had a surplus of labour available to invest in these practices and that the effort required to cultivate the fields would fit well with the tradition of communal social groups in the culture.

Erickson undertook the first raised-bed experiments in this region in the early 1980s in conjunction with colleagues in Peru and with funding from the Peruvian government. This project was admittedly a small-scale experiment, involving 10 hectares in the northern area of the lake basin (6, 9). Erickson formed a team of anthropologists, archaeologists and agronomists to work with Quecaha and Aymara volunteers on the experimental test beds over the course of five years. Metrics for the bed and canal sizes were based on data from archaeological excavations of the relict fields. Traditional tools were utilized to cultivate the soil. Considerable labour was required to reconstruct fields, but after the initial investment annual maintenance and rebuilding efforts were considered manageable tasks. Crops were chosen with the help of the community. For the duration of the experiment, potato and grains such as quinoa produced yields that far exceeded those achieved by modern methods used by farmers in the region today (6).

Alan Kolata organized a larger-scale, systematic project on the south side of the lake in the area near the ruins of Tiwanaku. Scientific analyses of the soils, water and climate were conducted to study the growing conditions of the area, and 50 hectares were planted with the involvement of 22 communities. Training materials were developed including multilingual videos, texts and hands-on instruction in the fields. Leaders of the local indigenous communities were involved to convey the potential of these methods to their people, with the intention of motivating groups to participate in the project. A formal agreement with these community leaders included a supply of seed and hand tools in exchange for participation in the project. The selection of crops took place with community members, and included primarily potatoes, grains and vegetables to a smaller extent (7).

Climate and politics halted both projects intermittently, as a severe drought and later political unrest swept through the region in the mid-1980s. However, by the end of the decade Erickson considered his team’s experiments a success (6). Kolata and his team reported high but widely variable yields in the 1991-92 seasons. He claims that this is due to variable compliance with the suggested practices and the uneven distribution of natural resources such as good soils and access to reliable sources of water (7). Practical problems were encountered, such as the draining of the canals to water livestock and resistance by some groups to invest labour in mucking out canal sediments. While some communities were enthusiastic and managed labour well, others were poorly organized and missed key milestones that affected crop yields. The yields from Erickson’s experiments were larger than those achieved by Kolata. Both were widely variable across the different communities. Ultimately, these experiments yielded crops two to three times larger than those raised with traditional methods (7, 11).

Kolata concludes that his project is a success in the short term, where program compliance fostered high crop yields for some participant groups, and the potential benefits of raised-bed agriculture were clearly demonstrated. However, he also expressed serious considerations regarding the long-term sustainability of this agricultural technique in the region. Both Kolata and Erickson suggest that agricultural practices need to be considered in the larger context of society, including considerations of economics, politics, technology and the environment (7, 12). Erickson and Chandler (9) point out that experiments such as these can generate the interest of the local community and stimulate change, but that lasting change must arise from within communities.

Part three in this series will compare and contrast these case studies, and evaluate their potential to affect change in global food-production practices today.

References

1. Ford A (2004) Human Impacts on the Maya Forest Linking the Past with the Present for the Future of El Pilar, Report on the 2004 Field Season. (The BRASS/El Pilar Program, University of California Santa Barbara, Santa Barbara).

2. Ford A (2008) The BRASS / El Pilar Program: Archaeology Under the Canopy. (MesoAmerican Research Center, University of California Santa Barbara).

3. Flannery KV ed (1982) Maya Subsistence (Academic Press, New York).

4. Ford A, Egerer C, Moore K, & Stanley E (2005) Culture & Nature in the Maya Forest: A Report on the 2005 Field Season - El Pilar. (Maya Forest Alliance & ISBER/MesoAmerican Research Center, University of California Santa Barbara, Santa Barbara).

5. Anonymous (2008) The El Pilar Forest Garden Network.

6. Erickson C (1988) Raised Field Agriculture in the Lake Titicaca Basin. Expedition 30(3):8-16.

7. Kolata AL, Rivera O, Ramirez JC, & Gemio E (1996) Rehabilitating Raised-Field Agriculture in the Southern Lake Titicaca Basin of Bolivia. Tiwanaku and its Hinterland : Archaeology and Paleoecology of an Andean Civilization, ed Kolata AL (Smithsonian Institution Press, Washington), Vol 1: Agroecology, pp 203-230.

8. Binford MW & Kolata AL (1996) The Natural and Human Setting. Tiwanaku and its Hinterland : Archaeology and Paleoecology of an Andean Civilization, ed Kolata AL (Smithsonian Institution Press, Washington), Vol 1: Agroecology, pp 23-56.

9. Erickson C & Chandler K (1989) Raised Fields and Sustainable Agriculture in the Lake Titicaca Basin of Peru. Fragile Lands of Latin America: Strategies for Sustainable Development, ed Browder JO (Westview Press, Boulder), pp 230-248.

10. Janusek JW & Kolata AL (2004) Top-down or bottom-up: rural settlement and raised field agriculture in the Lake Titicaca Basin, Bolivia. Journal of Anthropological Archaeology 23(4):404-430.

11. Erickson C (2003) Agricultural Landscapes as World Heritage: Raised Field Agriculture in Bolivia and Peru. Managing Change: Sustainable Approaches to the Conservation of the Built Environment. The 4th Annual US/ICOMOS International Symposium 6-8 April 2001, Philadelphia, Pennsylvania, eds Teutonico JM & Matero FG (Getty Conservation Institute, Los Angeles), pp 181-204.

12. Erickson C (1998) Appllied Archaeology and Rural Development. Crossing Currents: Continuity and Change in Latin America, eds Whiteford MB & Whiteford S (Prentice Hall, Upper Saddle River), pp 34-45.

Contributor’s Biography

Jennifer Huebert is a doctoral candidate in archaeology at the Department of Anthropology, University of Auckland, New Zealand. She is an archaeobotanist with a particular interest in the identification and analysis of archaeological wood charcoal. Her primary research topics include the study of human palaeoecology and the development of arboriculture in the archipelagos of East Polynesia.

Re-establishing Ancient Agricultural Practices: Lessons from the Recent Past (Part One)

By Jennifer Huebert Editor’s Note: This article is the first of three case studies investigating ancient agricultural practices. Look for the next installment in the Winter 2012 issue.

One of today’s most pressing global issues is the need to produce food more efficiently in order to feed the growing world population (1). This issue has been addressed with solutions ranging from genetically modified food plants to mechanized large-scale monoculture cropping practices. However, modifications people make to the landscape to cultivate food create significant and often destructive changes in the environment (2). Conscious efforts must be made to sustain agroecosystems and conserve natural resources so they can function in perpetuity.

There are important reasons to look to the ancient past for possible solutions to today’s agricultural problems. The environmental and social problems humans face today are not new. In fact, humanity may have faced the very same challenges millennia ago; people developed strategies to survive, and, at other times, the choices they made led to their ultimate demise. By looking at the past, we can see that cultures that modified ecosystems in environmentally unsustainable ways did not endure (e.g. 3, 4). We must study challenges faced in the past and attempt to learn from mistakes. In doing so, we can learn how to deal effectively with today’s problems.

Forces both cultural and natural—climate fluctuations, shifting dunes, geographic exploration, wars—acting over widely varying spans of time combine to make the world an unpredictable and constantly changing place (5). Cultures must be able to adapt because the environment and the world around us are continually changing; I argue that cultures must also adopt environmentally sustainable subsistence practices to ensure their long-term survival. In order to effectively implement change, these practices must fit within the social and economic systems of the cultures that use them (6).

In the distant past, when civilizations survived hard times there was often no record of their successes. Strategies once used to survive in difficult environments may be long forgotten; adaptive strategies may have occurred as an accumulation of subtle changes over long spans of time. When faced with looking at cultural and environmental changes over the long durée, archaeology can provide a unique perspective (7). As an interdisciplinary field, it also has the ability to bring together humanist and scientific disciplines in its pursuit. All of these attributes make archaeology especially suited to help people understand the consequences of the changes they consider effecting in the modern world (2, 4).

The study of ancient agricultural practices can thus provide valuable data to modern-day farmers, crop scientists and policy makers. Some agronomists have advocated that participatory development that uses sustainable practices is the answer. These practices encourage people to be self-sufficient in their means of food production, and ensure local control over resources and techniques used to raise crops (8, 9). An added benefit is the ability to apply a uniquely local perspective to management strategies that mitigate risks (10). This review, presented in three installments, explores case studies where forgotten or fading traditional agricultural practices were revived to address modern-day agricultural challenges. Examples were chosen to compare and contrast these initiatives in different cultures and geographic regions of the world. Each example illustrates a distinct problem to solve, and has a unique history to consider. Additionally, the teams all take different approaches to planning and implementing their projects. All face significant challenges and meet with varying degrees of success.

There are several key questions that should be addressed when considering the successful revival of forgotten agricultural technologies (4, 8-10).

•          First, is the practice appropriate for current environmental conditions? A landscape that once may have been a green pasture may now be a barren desert.

•          Second, is the practice sustainable? This answer may not be easy to discern without extensive study and experimentation.

•          Third, is there a clear benefit for the cost of implementing the practice? The practice may be very labour intensive to initiate, but if the returns are significant perhaps the investment is justified.

•          Fourth, is the technology accessible and are methods to implement it appropriate for this culture? Methods that require exotic tools and equipment may not be sustainable, and techniques that are unknown may be deemed risky or met with cultural resistance.

•          Finally, the ideology of the present society must be taken into account. The social networks that structure society and the motivations and needs of groups within must be understood, both for effective learning and to continue teaching these practices to the next generation (6).

Three case studies will ultimately be presented, along with a review of how effectively each initiative addressed the foregoing concerns. The projects will also be revisited to establish where they are today, and to assess whether these resurrected agricultural practices have benefitted modern-day societies.

Case Study #1: Runoff agriculture in the Negev Desert, Israel

Despite perceptions that the desert is a barren landscape, various forms of agriculture have been utilized to make desert areas productive. Modern irrigation systems have often been seen as the only solution to solving water problems in these areas, however these systems can be economically and technologically unattainable for many people (11). The techniques of runoff agriculture can provide an alternative. These techniques involve either channeling and storing seasonal desert floodwaters, or pumping the water through a system of chained wells to irrigate fields (12).

The remains of large-scale agriculture are seen throughout the Negev Desert of southern Israel, including thousands of hectares of stone walls and farmsteads, although the tradition and techniques have largely passed from memory. These remains were the source of scholarly speculation about the effects of severe erosion and climate change for more than a century before attracting the attention of a young Israeli botanist, Michael Evenari. Evenari considered that if the desert had once been farmed, it had the potential to be productive again (12). Evenari and an interdisciplinary team of scientists including archaeologists, agronomists, geologists and hydrologists, set out to study the remains of these ancient farms in the mid-20th century. Initially, the team’s goal was to prove theories about the effectiveness of runoff agriculture, rather than to revive ancient farming practices in this region. However, the project was later expanded to include extensive study of the desert climate, rainfall patterns and plants that could thrive under arid conditions.

After defining their project, the team set up a base at one of the ancient farmsteads and began to study the desert environment (see image 2). They first had to establish that the Negev had actually been a desert in ancient times, putting to rest speculations regarding a collapsed environment caused by erosion or climate change. Using archaeological excavation and aerial reconnaissance techniques, the team mapped stone walls, mounds, channels and dams that had been used to control seasonal flood waters in the desert (12). They discovered that water was channeled to the farms and, through varying arrangements, conveyed directly onto the fields or into cisterns where it was later distributed during the growing season. Three basic types of farms were identified. One involved simple terraces of low stone walls called wadis, which resemble a series of steps (see image 1). Wadis channeled floodwaters and prevented erosion. Another type of farm consisted of terraced fields and a farmhouse or watchtower, all surrounded by a stone fence. Hillside channels directed water to the terraces, and a series of stepped channels intricately directed the flow of floodwaters and pooled it for later use. The third type of farm was larger and far more elaborate, designed to catch runoff from very large wadis and direct it through a series of canals.

What were at first thought to be simple remains of single-occupation farm settlements were actually the layered remains of numerous, subsequent occupations. Archaeological excavations assisted the team in understanding the patterning and duration of human occupation dating back more than 10,000 years. While early residents settled near water sources, later residents settled along desert trade routes. Historical records, including ancient papyri discovered during archaeological excavations (12) indicated that this area was extensively settled to protect Nabataen trade routes across the desert, and later to support Christian pilgrimages to the Holy Land. Desert farming was intensely practiced over these time periods. Historical documents indicate that the Negev desert was intricately divided up based on water rights enforced by law. After about AD 700, the desert region was taken over by people who did not need to protect these routes. Traffic decreased, and the farms were abandoned. The area has since been home to Bedouin, a traditionally nomadic peoples who occasionally farm small plots of land.

Two ancient farms were reconstructed in the team’s initial field season. These were highly experimental projects intended to collect data about rainfall volume and to observe water runoff patterns. Water was collected from the first seasonal flood and a test planting of trees and crops took place. Crops planted included grapes, almonds, olives, fruit trees and barley. Fodder crops, legumes, fibre plants and vegetables were added in subsequent seasons. Fields were fertilized with animal dung left in the area by Bedouin animal herds, with the addition of some modern fertilizers. Bedouin residing in the area assisted with the first planting (12).

The team’s first experimental season did well despite a severe drought that followed. Evenari and his team took on a larger-scale project of 80 plots of land, planted extensive fruit tree groves the following season, and reported successful harvests. Systematic evaluation of these desert runoff collection systems indicated that over 50 percent of rainwater could be collected with these methods (13). Over the next 15 years, the team continued to cultivate, observe rainfall patterns and study desert crop plants on the reconstructed farms. In 1970, one farm became a training centre to teach others how to use these methods to cultivate crops in arid areas (12).

Discussion

Did this case study satisfy the criteria outlined for a successful revival of forgotten agricultural technologies? After much research, Evenari’s project team concluded that these practices were sustainable in a desert environment. It was remarkable that even unattended for many hundreds of years, water was still being channeled to the ancient cisterns during heavy rainfall. The team concluded, after examining historical documents and archaeological investigations, that desert farming had actually been practiced extensively here for a very long time. It only became a forgotten technology when trade routes through the desert were abandoned and / or remote borders were no longer maintained.

The team performed background research and experimented for several seasons to establish that these practices were appropriate for the current environmental conditions. They concluded that these cultivation techniques were still viable and productive in the Negev.

The immense effort and skill required to initially build walls and terraces throughout the desert in ancient times is thought to have involved labour coordinated from a state centre (14). Once these cultivation structures were in place, however, no extraordinary amount of labour was needed to farm the desert. Additionally, the cultivation techniques used in these systems did not require tools or technology that was out of reach for the Israeli food producers of the region.

Evenari’s project was conducted in large part to benefit the then newly formed state of Israel, and because of this, the initiative was well-supported on many levels. It should be noted, however, that the desert is also home to Bedouin. In his concluding remarks on the Negev project, Evenari mused that it would have been ideal to turn the desert into a productive environment for the Bedouins while preserving their cultural heritage (15). While it is not clear whether this aim was achieved, the model farm is now a worldwide teaching and research centre for the study of agronomy, plant and soil sciences in arid environments. It has affected change in arid farming practices in ten different countries (16), making it by all measures a successful re-establishment.

Part Two in this series will present a case study focusing on the revival of raised-bed agriculture in the Lake Titicaca basin of Peru.

References

1.         Uphoff NT (2002) Introduction. Agroecological Innovations: Increasing Food Production With Participatory Development, ed Uphoff NT (Earthscan, London), pp xv-xviii.

2.         Rogers JD (2004) The global environmental crisis: an archaeological agenda for the 21st century. The Archaeology of Global Change: The Impact of Humans on Their Environment, ed C. Redman SRJ, P.R. Fish, and J. D. Rogers (Smithsonian Books, Washington), pp 271-277.

3.         Diamond JM (2005) Collapse: How Societies Choose to Fail or Succeed (Viking, New York).

4.         Redman CL, S.R. James, P.R. Fish, and J.D. Rogers (2004) Introduction. The Archaeology of Global Change: The Impact of Humans on Their Environment, ed C. Redman SRJ, P.R. Fish, and J. D. Rogers (Smithsonian Books, Washington), pp 1-8.

5.         Barton CM, et al. (2004) Long-term socioecology and contingent landscapes. Journal of Archaeological Method and Theory 11(3):253-295.

6.         Kolata AL, Rivera O, Ramirez JC, & Gemio E (1996) Rehabilitating Raised-Field Agriculture in the Southern Lake Titicaca Basin of Bolivia. Tiwanaku and its Hinterland : Archaeology and Paleoecology of an Andean Civilization, ed Kolata AL (Smithsonian Institution Press, Washington), Vol 1: Agroecology, pp 203-230.

7.         Kirch PV & Sahlins MD (1992) Anahulu: The Anthropology of History in the Kingdom of Hawaii (University of Chicago Press, Chicago).

8.         Browder JO (1989) Introduction. Fragile Lands of Latin America: Strategies for Sustainable Development, ed Browder JO (Westview Press, Boulder), pp 1-10.

9.         Uphoff NT (2002) The Agricultural Development Challenges We Face. Agroecological Innovations: Increasing Food Production With Participatory Development, ed Uphoff NT (Earthscan, London), pp 3-20.

10.       Wilken GC (1989) Transferring Traditional Technology: A Bottom-Up Approach for Fragile Lands. Fragile lands of Latin America: Strategies for Sustainable Development, ed Browder JO (Westview Press, Boulder), pp 44-60.

11.       Fernandes E, Pell A, & Uphoff N (2002) Rethinking Agriculture for New Opportunities. Agroecological Innovations: Increasing Food Production With Participatory Development, ed Uphoff NT (Earthscan, London), pp 21-30.

12.       Evenari M, Shanan L, & Tadmor N (1982) The Negev: The Challenge of a Desert (Harvard University Press, Cambridge).

13.       Evenari M (1974) Desert Farmers: Ancient and Modern. Natural History 83(7):42-49.

14.       Haiman M (2006) ADASR - Ancient Desert Agriculture Systems Revived.

15.       Evenari M, Shanan L, Tadmor N, & Aharoni Y (1961) Ancient Agriculture in the Negev. Science 133(3457):979-996.

16.       Lange OL & Schulze E-D (1989) In memoriam Michael Evenari (formerly Walter Schwarz) 1904–1989. Oecologia 81(4):433-436.

Contributor’s Biography

Jennifer Huebert is a doctoral candidate in archaeology at the Department of Anthropology, University of Auckland, New Zealand. She is an archaeobotanist with a particular interest in the identification and analysis of archaeological wood charcoal. Her primary research topics include the study of human palaeoecology and the development of arboriculture in the archipelagos of East Polynesia.

Georg Gerster (Image 1) www.georggerster.com

Arizona Testbowl: Denying Human Rights and Experimenting with the Ecological Integrity of the San Francisco Peaks

In Northern Arizona, on the slopes of the state’s highest peak, stands an on-going controversy illuminating deep cultural divides.