Sonatas for Sustainability: How musical training imparts important qualities and skills for sustainability

By Chrissie Bausch Sustainability addresses urgent, multi-scalar problems that cut across social, economic, and environmental domains, have long-term implications, and high potential for damage (1). Sustainability researchers and educators are continually discussing the content of and approach to sustainability education. They agree that it must foster a unique set of skills and qualities, including creativity, empathy, system analysis, interdisciplinary thinking and collaboration. All of these skills are developed and fostered in musical instruction, which suggests that music can contribute to sustainability education.

"Music," wrote poet Walter Savage Landor, "is God’s gift to man, the only art of Heaven given to earth, the only art of earth we take to Heaven." Music is among humanity’s most splendid, inspiring, powerful forms of communication. But music is not just an aesthetic pleasure. Studies show that musical training during childhood correlates with improved motor and auditory skills, and improves the brain’s capacity to reorganize neural pathways. Research shows that music education contributes to personal development, cultivating confidence, listening skills, diligence, persistence, self-discipline and self-expression. It is not surprising, then, that it cultivates many of the skills and qualities required for thinking about and solving multifaceted challenges, including those tackled in the field of sustainability.

Perhaps the most obvious contribution that musical training can make to sustainability education is nurturing creativity. Wals and Jickling (2) tell us "there are no recipes" in sustainability: the field requires creative solutions for complex problems. Every process of music is creative, from practicing a piece to dancing to it. Describing music’s virtue of rousing creativity, Beethoven said, "Music is the wine which inspires one to new generative processes." The creativity stimulated by musical study is not limited to art forms; it can permeate any endeavor, including problem-solving for sustainability.

A musical work is a system of relationships among components such as rhythm, key, harmony, melody and instrumentation. Peretz and Zatorre (3) describe the systemic nature of even a simple tune, "which is defined not by the pitches of its constituent tones, but by the arrangement of the intervals between the pitches" (p.90). Music trains its students to recognize patterns and anticipate change, both important elements of systems thinking. Although music operates within a framework, it is about using that framework creatively; bending, stretching or even breaking away from it. Music unfolds, teaching students to anticipate change. Musical training prepares students to analyze dynamic systems, as well as recognize and conceive of creative adaptations, a skill that can be useful for developing sustainability solutions.

Underpinning the layers of music is the foundation of mathematics. Mathematician and philosopher Gottfried Wilhelm Leibniz said, "The pleasure we obtain from music comes from counting, but counting unconsciously. Music is nothing but unconscious arithmetic." Some of the basic components of music—rhythm, intervals, melodies and harmonies—are essentially arranged fractions. Music students must therefore learn to use quantitative, historical, cultural and linguistic information together, all while processing the music visually, aurally, physically and emotionally. In other words, music is an inherently interdisciplinary endeavor, like sustainability. Vocalists sing in many tongues, and instrumentalists partake in the feast of languages that comprise music’s vocabulary. Music is multicultural, encompassing a tremendous variety of instruments, qualities and formats, such as Argentina’s tango, Indonesia’s gamelan or Poland’s mazurka. All compositions have a cultural and historical context. Tchaikovsky’s "Overture of 1812," today known from the climax of the 2006 film V for Vendetta, was written to commemorate a proud moment for Russia: the defeat of Napoleon in the Battle of Borodino. Musicians unwrap the fascinating layers of meaning, history, politics, culture and structure so elegantly packaged in song.

Many of these elegant musical packages are the result of collaboration—a rewarding challenge in science and music alike. To create music together, people must listen, restrain the ego, work with the strengths and weaknesses of themselves and others, and settle differences to achieve a goal. Participating in a transdisciplinary project is like playing in an orchestra: musicians—or scientists—who could be doing solo work come together to bring to fruition something they could not have created alone. Ensemble work requires patience, compassion and communication. Music students can transfer these qualities and abilities to group work in other domains, making them effective participants for challenging transdisciplinary projects.

An essential quality for collaborative success is empathy, which sustainability education strives to cultivate while promoting the principles of justice, intergenerational equity and intragenerational equity. Empathy is at the heart of what musicians do. Researchers believe that empathy exists when humans create "pretend" desires and beliefs to match the emotions they think others experience. Arguably, humans enjoy art because it provokes this interaction between real and imagined emotions (4). When a good musician writes or performs a piece she communicates emotion, evoking the empathy of her audience.

Scholars of sustainability have much to gain from the skills and characteristics that musical training imparts. As we develop sustainability education, we must teach ecosystem functions, intergenerational justice and systems thinking. We must also emphasize creative, expressive and collaborative activities, such as music, that develop the competencies needed to address today’s complex, multi-scalar challenges. If we succeed, perhaps we will also bestow a little more "heaven on earth."

Contributor Biography Chrissie Bausch is a graduate student at the School of Sustainability (SOS) at Arizona State University. Her research explores agricultural sustainability, sustainability assessment, and equity and justice in sustainability. She was inspired to write this piece at a SOS town hall meeting, when during an icebreaker it was revealed that the overwhelming majority of faculty, students and administrators in attendance played a musical instrument. She would like to thank Kathryn Kyle and the TSR editors for their insights on music and sustainability, and for bringing more Bach and Mahler to her writing. Finally, she is grateful to her music teachers.

References 1. Brundiers, K., Wiek, A., & Redman, C. L. (2010). Real-world learning opportunities in sustainability: from classroom into the real world. International Journal of Sustainability in HIgher Education, 11(4), 308-324. 2. Wals, A. E. J., & Jickling, B. (2002). "Sustainability" in higher education: From doublethink and newspeak to critical thinking and meaningful learning. International Journal of Sustainability in Higher Education, 3(3), 221-232. 3. Peretz, I., & Zatorre, R. J. (2005). Brain Organization for Music Processing. Annual Review of Psychology, 56, 89-114. 4. Putman, D. (1994). Music and Empathy. Journal of Aesthetic Education, 28(2), 98-102.

New Moral Problems and New Approaches: Millennials Compared to Baby Boomers and Generation X

By Jathan Sadowski, Thomas P. Seager, and Evan Selinger (Authorship of this article is in alphabetical order)

A recent article in the highly ranked Journal of Personality and Social Psychology reports that, contrary to commonly held beliefs, the Millennial Generation is better cast as "Generation Me" than "Generation We." The study by psychologist Jean Twenge et. al. (1) analyzed the results of two nationally representative surveys, one administered since 1966 and the other since 1976. The surveys ask high school seniors and college freshmen a wide range of questions about life goals, concern for others, and civic orientation/social capital. The authors compared answers from across generations and determined that overall Millennials are more individualistic, materialistically motivated, and less civically engaged than the Baby Boomers and Generation X – despite the commonly held view that the current generation of college students is deeply concerned about social and environmental issues (e.g., 2).

One of the sharpest declines across the three generations is support for environmentally sustainable actions. For example, "Three times as many Millennials (15%) than Boomers (5%) said they made no personal effort at all to help the environment…" Millennials were also less likely to take measures to cut electricity use, and less likely to reduce heat usage during the winter to save energy (1).

These findings are at odds with the apparent surging interest among Millennials in sustainability. Even a cursory examination of college campuses will reveal that American universities are increasingly marketing to Millennials on a sustainability basis. Many offer degree and certificate programs in sustainability; they’ve created special administrative offices in sustainability; built LEED-certified and net-zero buildings; opened "green" dorms, instituted composting programs for cafeteria waste, and published campus sustainability reports. If Twenge is right, then many modern U.S. universities have badly miscalculated what interests their most important stakeholders.

On the other hand, it’s possible that longitudinal studies designed decades ago are no longer capable of capturing the characteristics, beliefs or moral attitudes that are salient today. As a consequence, what Twenge represents as moral decline may simply be generational incommensurability.

To take Twenge’s conclusions at face value risks ignoring three important observations:

  1. Although longitudinal studies focus on the individual as the proper scale of moral analysis, Millennials work in network groups to a much greater extent than any of their predecessors. Particularly with regard to sustainability problems, it may be that individual action is the wrong scale at which to consider moral obligation (3).
  2. Although Twenge’s interpretation equates actions with beliefs, we know from other studies that people often fail to live up to their own moral ideals (4). Consequently, it may be that Twenge is not measuring the narcissism she purports to have found, but the growing complexity that Millennials face when putting ideals into action.
  3. New technologies create new moral problems, and the Millennials are, to a greater extent than any prior generation, defined by the technology in which they are embedded. The moral questions that face the Millennials may be qualitatively different than those faced by previous generations, and as a consequence, be entirely unexamined by longitudinal studies.

The first observation about scale becomes important in the context of social interaction. The Baby Boomer generation may have conceived of moral action as an obligation the individual has towards society, without extending that obligation to include any responsibility for the actions of others. The old maternal refrain, "If Johnny jumped off a cliff, would you jump too?" is meant to reinforce the idea that the right action for one individual is independent of the actions that others take. But the increasingly interconnected world of the Millennials’ asks, "Did Johnny post on Facebook that he was going to jump?" The implication here is that we have an obligation to be sensitive to the emotional state of others (partly because these states are more public than ever) and that Millennials are, at least in part, responsible for the actions of others within their network. Dharun Ravi’s recent conviction on hate-crimes charges for secretly recording and sharing video of his gay roommate kissing another man reinforces this point. While Ravi’s public defense was, "I wasn’t the one who caused him to jump," the jury’s verdict suggests some culpability. To Millennials, posting, linking, blogging, and Tweeting may all be understood as moral acts, to the extent that these activities are meant to influence those beliefs, attitudes, or actions of others that to Baby Boomers may seem like "none of their business." After all, the use of social media is deeply intertwined with the events of the 2011 Arab Spring and Occupy Wall Street, both of which required an unprecedented use of technology to coordinate political action and civic engagement. According to Allenby (5), in a complex, interconnected world, "The choice of the process by which the individual becomes engaged in a dialog with the system, rather than each individual choice, is what becomes ethically critical."

The second observation speaks to long-standing evidence that people tend to overestimate their own capabilities (6). Compared to other generations, Twenge sees a decline in moral values that is based on a culture of rampant narcissism. Others point to a veritable epidemic of misplaced overconfidence (7) that has turned Millennials into the "self-esteem generation" (8). It may be true that Millennials indeed exhibit this tendency to a greater extent than prior generations, but at worst this would merely make them bigger hypocrites, not amoral beings. However, this conclusion disregards the increasingly complex challenge of putting moral ideals into action. Consider, for example, the problems of the environment and how they have changed since 1966. The Baby Boomers faced air and water pollution that was visible and tangible. Their environmental issues existed within the realm of human sensation, and progress towards environmental goals was rapid and measurable. By contrast, Generation X came of age under an ozone hole that could only be observed with scientific instruments and understood by advances in complicated photochemistry. Nevertheless, new policy prescriptions that phased out certain chlorinated hydrocarbons stopped the expansion of the ozone hole, and evidence is now accumulating that 25 years after the Montreal Protocol, the hole is shrinking (9). But the Millennials face the environmental problem of global climate change, which is not directly observable, even with sophisticated scientific instruments. Nor is science capable of directly modeling global warming with the reliability of previous environmental challenges, nor can science track progress towards a climate goal on a temporal scale that is meaningful to a single generation. Suppose the Millennials do care deeply about global climate change. What exactly should they do that would make an observable and convincing difference? The gap between moral ideals and moral action for Millennials may be larger than ever before simply because they are presented with larger obstacles.

Lastly, we must consider that technologies and their concomitant moral issues evolve more quickly than longitudinal studies. For example, the moral questions faced by the Baby Boom generation certainly included military conscription (i.e., the draft) and the birth control pill. By contrast, the all-volunteer Millennial military has fought America’s longest running foreign wars, where the critical moral question does not regard the military service of young adults – it concerns the use of drones. In reproduction, the moral issues are no longer whether women should be free to have sexual intercourse outside of marriage (although some conservative commentators no doubt are reliving the arguments of their own youth), but what constitutes paternity in cases of sperm donation, the legal status of frozen embryos (e.g., ownership), and cloning. Alternatively, consider civic engagement. Here, Twenge points out that the Millennials’ trust in government has declined considerably in comparison with their predecessors. However, this conclusion may conflate government with governance. Certainly, Millennials’ trust in Google (e.g., to curate personal data) or Wikipedia is extraordinary. That is, governance requires more institutions--systems of social order and cooperation that shape human interaction--than just government. It’s not enough to only ask questions that gauge attitudes towards the government because that misses out on all the contemporary institutions that help people manage their lives. A civil society includes corporations (profit and not-for-profit), markets, schools, and now social networks.

Although the issues we raise herein should clearly concern Twenge, it may not be obvious why the Millennials themselves, or the universities that serve them, should care at all. Nevertheless, consider that Twenge’s view of the problem evokes a particular kind of solution. If the Millennials are found to be morally deficient and are, by virtue of their place in history, nevertheless required to confront social problems like sustainability that have profound moral dimensions, then clearly universities have an obligation to attempt to correct the Millennial deficit. In Twenge’s view, this would require returning Millennials to the ideals and actions that properly characterized the Baby Boomers.

We disagree. If universities, and more specifically programs of ethics education, continue to focus on the moral issues that plagued previous generations, Millennials will no doubt be woefully unprepared to tackle the unfamiliar ethical dilemmas emerging from the technologies that define them. Effective ethics education must adapt to the networked way that Millennials address complex problems. It must empower students to use the technologies at their disposal to put their ideals into action, and it must take into consideration the moral problems these technologies create.


This material is based upon work supported by the National Science Foundation under Grant No. 1134943. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The Lincoln Center for Applied Ethics at Arizona State University also provided support.

Contributor Biographies

Jathan Sadowski is a research technician in the Lincoln Center for Applied Ethics at Arizona State University, Phoenix Metropolitan Area, AZ, USA. Thomas P. Seager is a professor at the School of Sustainable Engineering and the Built Environment and a Lincoln fellow of ethics and sustainability at Arizona State University, Phoenix Metropolitan Area, AZ, USA. Evan Selinger is an associate professor of philosophy at Rochester Institute of Technology, Henrietta, NY, USA.


1. Twenge, J. M., Campbell, W. K., & Freeman, E. C. (2012). "Generational Difference in Young Adults’ Life Goals, Concerns for Others, and Civic Orientation, 1966-2009. Journal of Personality and Social Psychology. Advance online publication.

2. Howe, N. & Strauss, W. (2000). Millennials Rising: The Next Great Generation. New York: Vintage.

3. Seager, T.P., Selinger, E. & Clark (Spierre), S. (2011). "Determining Moral Responsibility for CO2 Emissions: A Reply to Nolt." Ethics, Policy & Environment 14(1), 39-42.

4. Sadowski, J. (2011). Experimental Analysis of the Gap Between Moral Beliefs and Moral Actions. B.S. Thesis. Rochester Institute of Technology: USA

5. Allenby, B. (2006). "Macroethical systems and sustainability science." Sustainability Science 1, 7- 13.

6. Kahneman, D. (2011). Thinking, Fast and Slow. New York: Farrar, Straus and Giroux.

7. Klink, W. (2010). "Don't I Wish My Professor Was Hot Like Me." Review of Education, Pedagogy, and Cultural Studies. 32: 431-446

8. Bahr, N. & Pendergast, D. (2007). The Millennial Adolescent. Camberwell: ACER Press.

9. Crow, J.M. (2011). "First signs of ozone-hole recovery spotted." Nature. Retrieved from

Factors that Influence the Exit Rates of Sustainability Science: A Graduate Student’s Perspective

By Colin Kunzweiler Sustainability has been called both a buzzword and the issue of our age, but the field’s explosive growth demonstrates that it is also an "infectious" concept and field. Through a population model that included states of susceptibility, exposure and infectiousness (Figure 1), two authors recently explored individuals’ introduction to and progression within the emerging discipline of sustainability science (1). To summarize, susceptible individuals may understand sustainability to a certain extent or are interested in what the field has to offer, but they simply have not had enough contact with the concept or the field’s members to be sufficiently exposed to the idea. Exposure occurs through education and action, and the susceptible individual soon becomes capable of harboring and supporting the concept of sustainability. After extensive contact with infectious members (professors, researchers, or practitioners) the individual becomes a true member capable of infecting, or recruiting, others. While the authors use this model to describe the field’s rapid growth, they fail to describe the exit rate of individuals, which limits the field’s expansion and growth. Too often these exit rates, and the factors that influence them, are ignored. In this piece, I address this deficit and explore some of the challenges that may drive students, researchers, and practitioners away from or out of the field of sustainability science.

Two years ago, I was a susceptible individual assessing a future in sustainability science in light of many factors that could have resulted in a quick exit from the field. At the forefront of my mind, what exactly does a degree in sustainability entail? I come from a life sciences background so while I understand to a certain extent what biologists and ecologists study, what exactly do sustainability scientists study; what would I "sustain?" To the sustainability student, questions like "what are you studying" become antagonizing when they are coupled with "is sustainability science just learning how to go green?" An early mentor, however, was able to help me make sense of the many perspectives and worldviews within the field. Through challenging interactions with sustainability scientists and practitioners, I became convinced that the field was more than simply "studying recycling," it was a field dedicated to addressing the "wicked" problems of our time. In my mind, I had negotiated the factors that might drive susceptible individuals away from the field and soon became excited for an intense exposure to the concepts of sustainability.

What started as excitement for a new discipline; however, quickly turned into frustration. While my program attempted to overcome the ossification of stand-alone academic departments, what seemed to result was a haphazard introduction to entirely foreign theoretical and methodological frameworks. In my first year, I began to question what the skills of a sustainability scientist were and how my instruction was providing me with the appropriate theories and methods to address "wicked" sustainability problems. More importantly, I was concerned how the knowledge and skills I was supposedly gaining would help me achieve my own professional and academic goals.

I found out my frustrations were not unique and that sustainability scientists are currently addressing these very concerns. While still a work in progress, the field has taken a first step towards developing key competencies that enable students and practitioners to appropriately address sustainability challenges (2). While the competencies of sustainability science have been identified, it remains a daunting task to find sufficient theoretical and methodological inputs. This challenge is overcome only with the help of vetted sustainability scientists who have likewise struggled, yet have emerged prepared to address real world problems.

From my experience, exposed students and infectious researchers and practitioners of sustainability science encounter one additional challenge, navigating the tension between use-driven and theory-driven research. Researchers and academics are required to explore social-ecological systems and produce reliable results, but they cannot do so from their ivory tower. Practitioners need to address on-the-ground, contextual problems, but action without an understanding of complex nature-society interactions may lead to inappropriate responses and unintended consequences. From my disciplinary background, I have found it difficult negotiating not only what the output of my research will be, but also who will benefit from it. The ability of sustainability science to bridge knowledge creation and informed action provides members of the field the flexibility and power to address urgent human needs. Individuals must recognize, however, that as both a fundamental and an applied research, sustainability science is unlike traditional disciplines or sectors.

Nobody promised me that studying sustainability would be easy, but then again, nobody warned me of the pitfalls associated with the field, either. The field has grown exponentially over the last few decades, yet the sampling of challenges I have described here are real and may ultimately hinder the continued growth of the field. For this field to continue to progress, it is my opinion that the challenges described here that impact the exit rates of susceptible, exposed, and infectious individuals within sustainability science must be acknowledged in order to be successfully negotiated.


1. Bettencourt LMA, Kaur J (2011) Evolution and structure of sustainability science. Proc Natl Acad Sci 108:19540-19545.

2. Wiek A, Withycombe L, Redman CL (2011). Key competencies in sustainability: a reference framework for academic program development. Sustain Sci 6:203-218.

Contributor's Biography Colin Kunzweiler is a graduate student in the School of Sustainability at Arizona State University. His research explores the perceived risk and adaptation strategies of residents of Maricopa County, Arizona regarding mosquito-borne infectious diseases.

President Crow: American Research Universities Must Lead Our Emergence from the Stone Age

During the past few years many of us may have confronted the disturbing realization that the standard operating procedures of our contemporary culture often fall short of the mark or even produce entirely unintended consequences.